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Abstract

The main objective of this thesis is to examine the unsteady two-dimensional

nanofluid flow over a vertical stretching permeable surface in the presence of an

inclined magnetic field and non-uniform heat source/sink with Joule heating, vis-

cous dissipation and porous medium. Four different types of nanoparticles, namely

silver Ag, copper Cu, alumina Al2O3, and Titania TiO2, are considered by using

water as a base fluid with the Prandtl number. The governing partial differential

equations are transformed to coupled non-linear ordinary differential equations

by appropriate similarity transformation. Furthermore, the similarity equations

are solved numerically by using the fourth-order Runge-Kutta integration scheme

shooting method. A comparison of obtained numerical results is made with pre-

viously published results in some special cases, and excellent agreement is noted.

Numerical results for velocity and temperature profiles and for various nanoparti-

cles are discussed for various values of physical parameters.
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Chapter 1

Introduction

The analysis of hydrodynamic flowoand heat transfer overoa stretching sheet

hasogained substantial attention owing to its extensive applications in indus-

tryoand its influence to some technological processes.oSakiadis [1] laid foundation

for such a problemoby exploring the boundary layerofluid flow over aosteady solid

surface movingowith a constant velocity. Theostudy of thermal reaction was in-

vestigated by Erickson etoal. [2] and analytically manifested by Tsou etoal. [3].

Cran [4] augmented the work ofoSakiadis [1] to the flowocaused by an elasticosheet

moving in itsoown plane with a velocityochanging linearly with interval from an es-

tablished point. Afterwords, a number of researchers [5–8] investigated the steady

orounsteady boundary layer flowoof Newtonian and non-Newtonianofluids over

linear andononlinear stretching planes.

The word “nano”oanteceds to 1915 inothe book “The Worldoof Neglected Di-

mensions” by Oswald [9].oA distinct characteristic of the matteroat nano-scale

makes nanotechnology a novel research domain in the twenty-firstocentury. In

the lastofew decades, scientists andoresearchers all over the globe made effort to

continuously work on various aspects of nanotechnology. A nanofluid is aofluid in

which solidonanoparticles with length scalesoof 1-100 nm areocontained in a basic

heat transfer fluid.oThermal conductivity is strengthened by these nanoarticlesis

and the base fluid’s convective heat transfer coefficient considerably [10–12]. Oil,

ethylene glycol, and water mixtures, for example, are poor heatotransfer fluids

1



Introduction 2

because their thermal conductivity affectsothe heat transfer coefficientobetween

the heat transferosurface and the heatotransfer medium. In 1995, Choi [13]ocame

forth as a first person who used the term “nanofluid”oto represent a fluid contain-

ingonanoparticles. Choi et al.o[14] described that the additionoof a mini amount

(less thano1 percent by volume) ofonanoparticles to conventional heatotransfer liq-

uids enlarged the thermal conductivityoof the fluid upoto two times approximately.

Over the past twenty years, many research scholars studied various characteristics

of heat transfer behavior of nanofluid and fluid flow [15–17] andoestablished that

enhanced heatotransfer coefficient were attained with nanofluids.

Experimentalostudies [18, 19] exhibited that even withoa minute volumetric frac-

tion ofonanoparticles (usually less thano5 percent), with an exceptional improve-

ment in the convective heat transfer coefficient, the thermal conductivity ofothe

base fluid isoenhanced by 10-15 percent.In physics, chemistry,oand engineering, the

study of magnetic field effects is crucial. Many industrial typesoof equipment, such

asothe magneto hydrodynamic (MHD) generator,opumps, bearings, and bound-

aryolayer control, are affectedoby the interaction betweenothe electrically conduct-

ing fluidoand a magnetic field. Many researchers haveorecently investigated the

impactoof electrically conductingonanofluids in the presenceoof magnetic fields.

Physics,ochemistry, biomedical engineering, biosciences, and nuclearopower plants

all benefit from these investigations.

The unstable magnetic nanofluid behaviour of boundary layersoalong stationary

or moving stretched permeable surfaces are one of the most fundamental and

essential issues in this field. Daniel et al. [20] discussed the effects of twofold

stratification on unsteady electricaloMHD mixed convection nanofluid flow with

viscousodissipation and Joule heating.

The flow ofoa nanofluid over anoinclined vertical porousoplate with radiation and

heat generation/absorptionowas examined using MHD heat and mass transfer by

Reddy etoal. [21]. Prabhavathioet al. [22] andoSreedevi et al. [23]o investi-

gated the flow of MHD boundary layeroheat and mass transferoaround a vertical

coneoembedded in porous mediaofilled with nanofluid. Hayat et al. [24] pro-

vided a numerical simulation of melting heat transferoand radiation effects inoa
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carbon-water nanofluid stagnation point flow. All of these investigations were fo-

cused on Newtonian fluid flows,owhereas only the MHD non-Newtonianonanofluid

flow caused by a stretched sheet was investigated by Madhu etoal. [25], Hayat

etoal. [26], and Hsiaoo[27]. Eldabe and Abou-Zeido[28] developed a homotopy per-

turbation approach for MHD pulsatileonon-Newtonian nanofluid flow withoheat

transfer via a non-Darcy porousomedium with heat transferothrough a non-Darcy

porousomedium. Sreedevi et al.o[29] studied the effects of thermal radiation, chem-

ical reaction and massotransmission of nanofluid through a linear andonon-linear

stretching surface. The same scientists recently performed magneto-hydrodynamic

heat and massotransfer study of single andomulti-wall carbon nanotubesoalong

a vertical cone with convection [30]. Jyothi etoal. [31] investigated the effect

of a magnetic field andothermal radiation on the convective flow ofoSWCNTs-

water and MWCNTs-water nanofluidobetween spinning stretchable discs under

convective boundary conditions. The activation energy of a nanofluid flow inothe

presence of aochemical reaction and convectiveoboundary conditions was inves-

tigated by Zeeshan etoal. [32]. In the light of aforementioned investigations, it

is clear that not a attempts has been made to explore inclined magnetohydrody-

namic nanofluidotransport with non-uniform heatosource/sink, to the best of the

authors’ knowledge. The purpose ofothis research is to investigateothe effects of

nanoparticlesoon the heat transferoproperties of a permeable unstable stretched

sheet. In addition, the extra effects of a non-uniform heatosource/sink and an

inclined magnetic fieldoare taken into account in this model. In the present study,

the nanofluid model proposed by Tiwari and Das [33] was used, as this model

successfully applied in several papers [34–36]. The governing partialodifferential

equations are reduced to ordinary differential equations using an appropriate simi-

larity transformation, andothen numerically solved using the fourth-orderoRunge-

Kutta integration scheme and the shooting methodowith the help ofosymbolic

computational software MATLAB. In several situations, the derived numerical

findings are compared to previously published data [37–39], and there is excellent

agreement. The results are visually displayed, and the physical components of the

problemoare explored. The skin frictionocoefficient and the localoNusselt number

at theostretched surface are also provided and explained in tabular form.
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1.1 Thesis Contribution

In this thesis, a detailed review of Elgazery [40] is conducted and the results have

been imitated by considering the additional effects of viscous dissipation, Joule’s

heating and porous medium.

1.2 Thesis Outline

A brief overview of the content of the thesis is provided as:

In Chapter 2, we explain few basic definitions and terminologies. Furthermore,

some basic laws and dimensionless physical parameters are also included.

In Chapter 3 Elgazery [40], which considers a 2-dimensional unstable stretched

surface with non-uniformoheat source/sink in theopresence of an angled magnetic

field, is reviewed in detail.

In Chapter 4, we extend the model given in Elgazery [40] by considering the

additional impact of viscous dissipation, Joule’s heating and porous medium fluid

in the momentum and energy equation. The obtained system of dimensionless

ODEs is solved numerically byoshooting method. The behavior of different phys-

ical parameters is explained through tables and graphs.

In Chapter 5, we recapitulate the thesis and give the conclusion from the whole

work.

All the references used in this research work are listed in Bibliography.



Chapter 2

Basic Definitions andoGoverning

Equations

This chapter addressesosome basic concepts, definitions oand governing laws re-

latedoto the fluid dynamics.oDimensionless quantities are alsoodiscussed which

seem toobe helpful in the subsequent chapters. Moreover,oa brief discussion hasobeen

done for the numerical methodology adopted for the solutionoof governing equa-

tions. A simple two-dimensional Poisson problem is also solved here to explain

the numerical procedure for the achievement of results.

2.1 Basic Definitions

This section covers some fundamental fluid dynamics definitions. These concepts

are used to describe the flow, heat transfer and influence of thermophysical prop-

erties that are used in next chapter.

Definition 2.1.1. (Fluid)

“Fluid is a substance that shows continuous deformation under the effect of shear

stress.” [41]

Definition 2.1.2. (Fluid Mechanics)

“Fluid mechanics is the study of fluids either in motion or at rest.”[41]

5
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Definition 2.1.3. (Fluid Statics)

“Fluid statics is that branch of fluid dynamics which focuses on the study of fluids

at rest.”[41]

Definition 2.1.4. (Fluid Dynamics)

“The branch of fluid mechanics that is concerned with motion of fluids from one

place to another.”[41]

Definition 2.1.5. (Pressure)

“The continuous physical force exerted on the unit area of surface is said to be

pressure. It is expressed by P and mathematically, it can be written as

P =
F

A
,

where F and A denote the applied physical force and area of the surface.”[42]

Definition 2.1.6. (Density)

“Density is defined as mass per unit volume. It is represented by Greek letter ρ

and mathematically, it is defined as

ρ =
m

V
,

where m and V are the mass and volume of the substance, respectively.”[42]

Definition 2.1.7. (Viscosity)

“Viscosity of a fluid is defined as the measure of resistance to steady distortion

by shear/tensile stress. A notation used for viscosity is µ and its mathematical

expression is,

Viscosity(µ) =
Shear stress

Rate of shear strain
,

where µ is called the coefficient of absolute viscosity/dynamics viscosity or simple

viscosity. The dimension of viscosity is

[
M

LT

]
.”[42]

Definition 2.1.8. (Kinematic Viscosity)

“It is defined as the ratio of the dynamic viscosity µ to the density ρ of the

fluid. It is also referred as momentum diffusivity. It is denoted by Greek letter ν.

Mathematically,
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ν =
µ

ρ
,

In SI system of units the unit of kinematic viscosity is
m2

s
and dimension is

[L2T−1].”[42]

Definition 2.1.9. (Nanofluids)

“The nanofluid is defined as the homogeneous mixture of the base fluid and

nanoparticles. The nanoparticles used in nanofluids are typically made of met-

als, oxides, copper, carbides or carbon nanotubes.”[42]

2.2 Classification of Fluids

Fluids are basically divided into two main classes. These classes can be defined as

follows.

Definition 2.2.1. (Compressible and Incompressible Fluids)

“A flow is incompressible in which the density remains constant within the fluid.

Therefore, the volume of every portion of the fluid remain unchanged. Mathemat-

ically, Dρ

Dt
= 0,

where, ρ is the fluids density and D
Dt

is the material derivative. Mathematically,

material derivative is given by

D

Dt
=

∂

∂t
+ V.∇, (2.1)

In (2.1),V indicates the fluid’s velocity and ∇ is the differential operator. In

Cartesian coordinate system ∇ can be written as

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂,

the flow is known to be incompressible if the fluid’s density remains constant.

Liquids are treated as incompressible.”[43]

Definition 2.2.2. (Newtonian and Non-Newtonian Fluids)

“The fluids, which fulfill Newton’s law of viscosity are known as Newtonian fluid.

Newton’s law is described mathematically as follows;
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τyx = µ(
du

dx
), (2.2)

where τyx is the shear stress and µ is called the constant of proportionality. The

most common example of Newtonian fluids is water. Those fluids, which do not

obey the Newton’s law of viscosity are known as non-Newtonian fluids. For Non-

Newtonian fluids,

τyx = k(
du

dx
)n, (2.3)

where n 6= 1 is flow behavior index. For n = 1 with k = µ, the above equation re-

duce to the Newton’s law of viscosity. Paints, blood, biological fluids and polymer

melts, are good examples of non-Newtonian fluids.”[43]

Definition 2.2.3. (Real Fluid)

“The fluids, which have non-zero viscosity are called real fluids. These fluids may

be compressible or in-compressible. It depends upon the relationship between the

shear stress and rate of shear strain.”[43]

Definition 2.2.4. (Flow)

“It is the deformation of material under the influence of different forces. If this

deformation increase continuously without any limit, then this process is known

as flow.”[43]

2.3 Types of Flows

Following are different types of fluid’s flow depending upon its physics and status

of channel.

Definition 2.3.1. (Uniform and Non-Uniform Flows)

“The flow, in which magnitude as well as the direction of the fluid velocity is the

same at each points of the flow. In case of non-uniform flow, the velocity is not

same at each point of the flow at any given instant.”[43]

Definition 2.3.2. (Steady and Unsteady Flows)

“Fluid flows can be classified as steady or unsteady on the basis of fluid properties.

The flow is said to be steady, if the fluid properties such as velocity and density
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do not vary with time. Water flow with consistent release through a pipeline is an

example of steady flow. Mathematically,

∂B

∂t
= 0,

where B denotes any fluid property. On the other hand flow in which fluid proper-

ties change with time is known as unsteady flow. Water flow with varying release

through a pipe is an example of unsteady flow. Mathematically, In this case,[43]

∂B

∂t
6= 0.”

Definition 2.3.3. (Laminar and Turbulent Flows)

“A flow in which the particles of the fluid have specific path and individual particle

does not intersect each other is known as laminar flow. In such flow, the particles

move along well-defined path. The flow in which fluid particles have no specific

paths and they move randomly is called turbulent flow.”[43]

Definition 2.3.4. (Internal Flow)

“Internal flows are those where fluids flow through confined spaces, e.g., flow in

pipe.”[43]

Definition 2.3.5. (External Flow)

“The flow which is not confined by the solid surface, is known as external flow.

The flow of water in the river is an example of the external flow.”[43]

2.4 Mechanism of Heat Transfer

Heat is an important form of energy. It always transfers from hot region to cold

region with or without the involvement of material medium. The ways through

which it transfers from one body to another body are called “modes of heat trans-

fer ”. The common means for heat transfer are conduction, convection and radia-

tion.These can be defined as given below:

Definition 2.4.1. (Conduction)

“Due to collision of molecules in contact form, heat is transferred from one objects
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to another objects is called conduction. Such types of heat transfer occurs in the

solid.”[42]

For examples:

Picking up a hot cup of tea,

When a car is started, the engine heats up,

Conduction can be seen in a radiator.

Definition 2.4.2. (Convection)

“It is a mechanism in which heat transfer occurs due to the motion of molecules

within the fluid such as air and water. A mathematical expression for convection

phenomena is
q = hA(Ts − T∞), (2.4)

where h, A, Ts and T∞ denote the heat transfer coefficient, the area, the tem-

perature of the surface and the temperature away from the surface respectively.

Further, it is subdivided into the following three categories.”[42] For examples:

Macaroni rising and falling in a pot of boiling water,

I’m drinking a steaming cup of tea. The steam demonstrates heat transfer into

the atmosphere.

Definition 2.4.3. (Natural Convection)

“It is the process, in which heat transfer is caused by the temperature differences.

It effects the density of the fluids and the fluid motion is not developed by an

external source. It occurs only in the presence of gravitational force and also

known as free convection.”[42]

For examples:

• Sea breeze: This occurrence happens during the day. The light warms both

the sea and the land,

• Land Breeze: This occurrence happens during the night when the situation

reverses.

Definition 2.4.4. (Forced Convection)

“It is a type of heat transfer in which an external source is used to produce motion

of the fluid. e.g. fan or a pump.”[42]
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For example on a hot summer day, using water heaters or geysers for quick water

heating and using a fan.

Definition 2.4.5. (Mixed Convection)

“It is the combination of both forced convection and natural convection and both

occur simultaneously.”[42]

For example on a heated plate, a fan blows upward. Because heat rises naturally,

The heat transfer is aided by the air being forced upward over the plate.

Definition 2.4.6. (Radiation)

“In radiation process, heat is transferred through electromagnetic rays and waves.

It takes place in liquids and gasses.

An example of radiation would be atmosphere, the atmosphere is heated by the

radiation of the sun.”[42]

For examples:

Your stereo’s sound waves,

A microwave oven produces microwaves,

Your cell phone emits electromagnetic radiation.

Definition 2.4.7. (Thermal Conductivity)

“It is the property of a substance which measures the ability to transfer heat.

Fourier’s law of conduction which relates the flow rate of heat by conduction to

the temperature gradient is
dQ

dt
= −kAdT

dx
,

where A, k,
dT

dx
and

dQ

dt
are the area, the thermal conductivity, the gradient and

the rate of heat transfer, respectively. The SI unit of thermal conductivity is
Kgm

s3

and the dimension of thermal conductivity is

[
ML

T 3

]
.”[42]

Definition 2.4.8. (Thermal Diffusivity)

“The ratio of the unsteady heat conduction k, of a substance to the product of

specific heat capacity Cp and density ρ is called thermal diffusivity. It quantify

the ability of a substance to transfer heat rather to store it. Mathematically, it

can be written as
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α =
k

ρCp
,

The unit and dimension of thermal diffusivity in SI system are m2s−1 and [LT−1]

respectively.”[42]

Definition 2.4.9. (Joule Heating)

“It is the procedure in which heat is generated by passing an electric current

through a conductor. It is also known as ohmic heating and resistive heating.”[42]

Definition 2.4.10. (Viscous Dissipation)

“In viscous fluid flow, the viscosity of the fluid will take energy from the kinetic

energy and transform it into internal energy of the fluids. This process is called

viscous dissipation.”[42]

Definition 2.4.11. (Thermal Radiation)

“The ejection of electromagnetic waves from the matters that have temperature

higher than absolute zero is called thermal radiation.”[42]

For example: Daily weather

Definition 2.4.12. (Porous Medium)

“A material containing the pores in it is called porous material or a porous medium.

Pores are usually filled with fluid, i.e., liquid or gases. A porous medium is often

considered by its porosity.

Many natural materials such as soil, rocks (e.g., aquifers, petroleum, zeo-lites),

biological tissues (e.g., wood, bones, cork) and hand made substances such as

ceramics and cements can be characterized as porous media.”[42]

2.5 Dimensionless Numbers

In this section we will define some dimensionless numbers which are of significant

importance for the problems discussed in chapter 3 and chapter 4.

Definition 2.5.1. (Reynolds Number)

“It is the ratio of inertial forces to viscous forces. The behavior of the different
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kinds of flow will be identify like laminar or turbulent flow. Mathematically,

Re =
ρU2

L
µU
L2

, ⇒ Re =
LU

ν
,

where U denotes the free stream velocity, L is the characteristics length and µ

stands for kinematic viscosity.”[44]

Definition 2.5.2. (Prandtl Number)

“The ratio of kinematic diffusivity to heat diffusivity is said to be prandtle number.

It is denoted by Pr. Mathematically it can be written as

Pr =
ν

α
⇒

µ
ρ

k
Cp

⇒ µCp
kρ

,

where µ and α denote the momentum diffusivity or kinetic diffusivity and thermal

diffusivity respectively. Here Cp denotes the specific heat and k stands for thermal

conductivity. The Prandtl number named after the German physicist Ludwig

Prandtl is used characteristics the regime of convection. ”[44]

Definition 2.5.3. (Nusselt Number)

“It is the relationship between the convective to the conductive heat transfer

through the boundary of the surface. It is a dimensionless number which was

first introduced by the German mathematician Nusselt. Mathematically, it is de-

fined as:
Nu =

hL

k
,

where h stands for convective heat transfer, L stands for characteristics length and

k stands for thermal conductivity. A large Nusselt number means very efficient.

For example turbulent pipe flow yields No of order 100 to 1000 and Nusselt number

of value one represent heat transfer by pure conduction.”[44]

Definition 2.5.4. (Schmidt Number)

“Schmidt number (Sc) is a dimensionless number after Ernst Wilhelm Schmidt

and characterized as the proportion of momentum diffusivity (viscosity) to mass

diffusivity and is utilized to describe fluid flows in which there are simultaneous

momentum and mass diffusion convection.”[44]
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Definition 2.5.5. (Eckert Number)

“It is the proportion of the kinetic energy dissipated in the flow to the thermal

energy conducted into or away from the fluid.”[44]

Definition 2.5.6. (Skin Friction Coefficient)

“Skin friction coefficient represents the value of friction which occurs when fluid

moves across the surface. Mathematically

Cf =
2Tyx
ρU2

e

,

where Tyx is the shear stress at the wall, ρ the density and Ue the free-stream

velocity.”[44]

Definition 2.5.7. (Darcy Number)

“The Darcy number Da represents the effect of the permeability of medium ac-

cording to its cross sectional area

Da =
κ

H2
,

where κ shows the permeability of porus medium and H is the length of prescribed

geometry. It was first introduced by Henry Darcy. It is transformed by the non

dimensionalizing the differential form of Darcy’s law.”[44]

2.6 Continuity Equation

“Continuity equation is derived from the law of conservation of mass and

mathematically [45], it is expressed by

∂ρ

∂t
+∇.(ρV ) = 0, (2.5)

where t is the time. If fluid is an incompressible then the continuity equation is

expressed by

∇.V = 0.” (2.6)
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2.7 Law of Conservation of Momentum

“Each particle of fluid obeys Newtons second law of motion which is at rest or

in steady state or accelerated motion. This law states that the combination of

all applied external forces acting on a body is equal to the time rate of change

of linear momentum of the body. In vector notation this law can be written as [46]

ρ
dV

dt
= divτ + ρb, (2.7)

for Navier-Stokes equation

τ = −pI + µA1, (2.8)

where A1 is the tensor and first time it was produced by Rivlin-Erickson.

A1 = gradV + (gradV)t, (2.9)

In the above equations,
d

dt
denote material time derivative or total derivative, ρ de-

note density, V denote velocity field, τ the Cauchy stress tensor, b the body forces,

p the pressure, µ the dynamic viscosity. The Cauchy stress tensor is expressed in

the matrix form

τ =


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

 , (2.10)

where σxx, σyy and σzz are normal stresses, others wise the shear stresses. For

two-dimensional flow, we have V = [u(x, y, 0), v(x, y, 0), 0] and thus

gradV =


∂u
∂x

∂u
∂y

0

∂v
∂x

∂v
∂y

0

0 0 0

 , (2.11)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ v

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.12)

Similarly, we repeat the above process for Y component as follows:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂y
+ v

(
∂2u

∂x2
+
∂2u

∂y2

)
.” (2.13)



Preliminaries 16

2.8 Law of Conservation of Energy

“The law of conservation of energy states that the time rate of change of the total

energy is equal to the sum of the rate of work done by the applied forces and

change of heat content per unit time.

∂ρ

∂t
+∇.ρu = −∇.q +Q+ φ

where φ is a dissipation function.”[45]

2.9 Solution Methodology

Shooting method [35] is used to solve the higher order nonlinear ordinary differen-

tial equations. To implement this technique, first convert the higher order ODEs

to the system of first order ODEs. In the shooting method, first we assume the

missing initial conditions and the differential equations are then integrated nu-

merically through Runge-Kutta method as an initial value problem. The accuracy

of the assumed missing initial condition is then checked by comparing the calcu-

lated values of the dependent variables at the terminal point with their given value

there. If the boundary conditions are not fulfilled upto the required accuracy, with

the new set of initial conditions, which are modified by Newton’s method. The

method is repeated again until the required accuracy is achieved. To explain the

shooting method, we consider a general second order boundary value problem,

y
′′

= f(x, y, y
′
(x)), (2.14)

subject to the boundary conditions

y(0) = 0, y(L) = A, (2.15)

By denoting y by y1 and y
′
1 by y2, Eq. (2.14) can be written in the form of following

system of first order equations

y
′

1 = y2, y1(0) = 0, y
′

2 = f(x, y1.y2), y1(L) = A. (2.16)
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Denote the missing initial condition y2(0) by s, to have

y
′

1 = y2, y1(0) = 0, y
′

2 = f(x, y1.y2), y2(0) = s. (2.17)

Now the problem is to find s such that the solution of the IVP (2.17) satiates the

boundary condition y(L) = A.

In other words, if the solutions of the initial value problem (2.17) are denoted by

y1(x, s) and y2(x, s), one should search for that value of s which is an approximate

root the equation.

y1(L, s)− A = φ(s) = 0, (2.18)

To find an approximate root of the Eq. (2.18) by the Newton’s method, the

iteration formula is given by

sn+1 = sn −
φ(sn)

dφ(sn)

ds

, n = 0, 1, 2, 3, .... (2.19)

sn+1 = sn −
y1(L, sn)− A
dy1(L, sn)

ds

, (2.20)

To find the derivative of y1 with respect of s, differentiate (2.17) with respect to
s. For simplification, use the following notations

dy1
ds

= y3,
dy2
ds

= y4, (2.21)

This process results in the following IVP.

y
′

3 = y4, y3(0) = 0, y
′

4 =
∂f

∂y1
y3 +

∂f

∂y2
y4, y4(0) = 1, (2.22)

Now, solving the IVP Eq. (2.22), the value of y3 at L can be computed. This

value is actually the derivative of y1 with respect to s computed at L. Setting the

value of y3(L, s) in Eq. (2.20), the modified value of s can be achieved. This new

value of s is used to solve the Eq. (2.17) and the process is repeated until the

value of s is within a described degree of accuracy.



Chapter 3

Study of NanofluidoFlow over a

StretchingoSheet with Inclined

MagneticoField and Non-Uniform

HeatoSource/Sink

3.1 Introduction

A detailed review of the work done by Elgazery [40] is presented here. The flow of

nanofluids over aopermeable unstable stretched surface with a non uniform heat

source/sink in the presence of a magnetic field has been studied in this chapter.

Transformations of similarity are used tooreduce the partial differentialoequation

that governs into set of non-linear ordinary differential equation. These equations

are then numerically solved using the shootingomethod, followed by the RK-4 and

Newton methods using the MATLAB tool.

Finally, the numerical outcomes are discussed for different physical parameters

causing impact on the heat. Graphs are represented to show the physical signifi-

cance of distinct dimensionless quantities.

18
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3.2 Mathematical Modeling

In this chapter, we suppose that the boundary layer flow is unsteady, laminar,

incompressible, two-dimensional, and electrically conducting owing to a perme-

able stretching sheet that is vertical in the x direction. The flow is subjected to

a uniform inclined magnetic field B0 [47]. Along the x-axis, the application of

an inclined magnetic field with an acute angle γ. The created magnetic field and

viscous dissipation are also expected to have minimal effects. Convectional heat

transfer is taken into consideration. The sheet’s linear stretching as it moves in

its own plane at the surface velocity creates the flow.

Uw (x, t) =
xa

1− ct
,

where the constants a and c are both positive having dimension t−1 with ct ≤ 1

and c ≥ 0 [48].

Tw (x, t) is the temperature at the sheet surface asoa function of distanceox and

Figure 3.1: The coordinate system and physical model

time t, and its temperature T∞ is higher than that of the surrounding fluid. Ther-

mal equilibrium is also expected for the base fluid (water) and the nanoparticles,

with no slide between them [48]. The thermophysical characteristics of water and
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nanoparticles are listed in the table below.

Table 3.1: Thermophysical properties of water and nanoparticles

ρ(kg/m3) Cp(j/kgK) k(W/mK) β × 10−5(K−1)
Pure water 997.1 4179 0.613 21
Copper(Cu) 8933 385 401 1.67
Silver(Ag) 10500 235 429 1.89

Alumina(Al2O3) 3970 765 40 0.85
Titanium oxide(TiO2) 4250 686.2 8.9538 0.9

3.3 Governing Equations

The current flow and heatotransfer for a nanofluidoin the presenceoof an inclined

magnetic field, as well as internal heat generation/absorption due to the Boussi-

nesq approximations, can be described as:

Continuity equation:

∂u

∂x
+
∂v

∂y
= 0 (3.1)

Momentum equation:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
µnf
ρnf

∂2u

∂y2
+ g

(ρβ)nf
ρnf

(T − T∞)− σnf
ρnf

B2
0 sin2 γu (3.2)

Energy equation:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
+

q
′′′

(ρCP )nf
(3.3)

along with the initial and boundary conditions

u = uw (x, t) =
ax

1− ct
,

v = vw(t) = −
√

avf
1− ct

fw,

T = T∞ +
bx

(1− ct)2
= Tw(x,t), at y = 0,

u = 0, T = T∞, as y →∞


(3.4)
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where u represents velocity components in the x direction and v represents velocity

components in the y directions. fw > 0 and fw < 0 are injection and suction

parameters, respectively, while b is constant with a temperature/length dimension.

Assisting and opposing flow is aspect field by the value b > 0 and b < 0 respectively.

The dimension of b is temperature/length, In the absence of buoyancy force, b = 0

denotes the forced convection limit. Whereas νf is the kinematic viscosity of fluid.

3.4 Similarity Transformation

The following similarity variables are used to transform the partial differential

equations into ordinary differential equations [40].

ψ (x, y, t) =

√
aνf

(1− ct)
xf (η) , η =

√
a

νf (1− ct)
y,

θ (η) =
T − T∞
Tw − T∞

, u =
∂ψ

∂y
=

ax

(1− ct)
f

′
(η) ,

v = −∂ψ
∂x

= −
√

aνf
1− ct

f(η).

Some significant derivatives are calculated as follows:

• ∂u

∂x
=

(
a

1− ct

)
f

′
,

• ∂v

∂y
= −

√
aνf

1− ct
f

′
(η)

∂

∂y
(η),

= −
√

aνf
1− ct

f
′
(η)

(√
a

νf (1− ct)

)
,

= −
√

a

1− ct
f

′
(η)

(√
a

(1− ct)

)
,

= − a

1− ct
f

′
(η).

The heat source/sink with non-uniform heat distribution is modeled [49] as[
q
′′′]

as follow:

q
′′′

=
uw(x)knf
xνnf

[
A (Tw − T∞) f

′
+B (T − T∞)

]
,
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where A andoB are the heat source/sink coefficients that are space and

temperatureodependent. Internal heat generation is represented by A > 0

and B > 0, internal heat absorption is represented by A < 0 and B < 0,

respectively.

Continuity equation is trivially satisfied as follows:

• ∂u

∂x
+
∂v

∂y
=

a

1− ct
f

′
+

(
− a

1− ct
f

′
)
,

∂u

∂x
+
∂v

∂y
=

a

1− ct
f

′ − a

1− ct
f

′
,

∂u

∂x
+
∂v

∂y
= 0.

For the conversion of momentum Eqs. (3.2), we proceed as follows:

• ∂u

∂t
= ax

∂

∂t
f

′
(1− ct)−1,

= −axf ′
(1− ct)−2(−c) + ax(1− ct)−1f ′′ ∂

∂t

(√
a

νf
(1− ct)− 1

2

)
y,

=
acxf

′

(1− ct)2
+

axy

(1− ct)
f

′′
√

a

νf

(
(−1

2
)(1− ct)− 3

2 (−c)
)
,

=
acxf

′

(1− ct)2
+

acxy

2(1− ct) 5
2

f
′′
√

a

νf
.

• ∂u

∂x
=

a

1− ct
f

′
.

• ∂u

∂y
=

∂

∂y

(
ax

(1− ct)
f

′
)
,

=
ax

(1− ct)
f

′′ ∂

∂y

(√
a

νf (1− ct)
y

)
,

=
ax

(1− ct)

√
a

νf (1− ct)
f

′′
.

• ∂2u

∂y2
=

ax

(1− ct)

√
a

νf (1− ct)
∂

∂y

(
f

′′)
,

=
ax

(1− ct)

√
a

νf (1− ct)
f

′′′ ∂

∂y

(√
a

νf (1− ct)
y

)
,

=
ax

(1− ct)

√
a

νf (1− ct)
f

′′′
√

a

νf (1− ct)
,
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=
ax

(1− ct)

(
a

νf (1− ct)

)
f

′′′
,

=
a2x

νf (1− ct)2
f

′′′
.

• ∂u

∂x
=

(
a

(1− ct)
xf

′
)(

a

1− ct
f

′
)
,

=
a2

(1− ct)2
x (f ′)2 .

v
∂u

∂y
=

(
−
√

aνf
1− ct

f

)(
ax

(1− ct)

√
a

νf (1− ct)
f

′′

)
,

• v
∂u

∂y
= − xa2

(1− ct)2
ff

′′
.

By using above derivatives, the dimensionless form of the L.H.S of (3.2) becomes:

• ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

acx

(1− ct)2
f

′
+

acxy

2(1− ct) 5
2

f
′′
√

a

νf

+
a2x

(1− ct)2
(f

′
)2 − xa2

(1− ct)2
ff

′′
,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

xa

(1− ct)2
[
c
(
f

′
+
η

2
f

′′
)

+ a
(

(f
′
)2 − ff ′′

)]
. (3.5)

Likewise the R.H.S is as follow:

• µnf
ρnf

∂2u

∂y2
+ g

(ρβ)nf
ρnf

(T − T∞)− σnf
ρnf

B2
0u sin2 γ =

µnf
ρnf

a2x

νf (1− ct)2
f

′′′

+ g
(ρβ)nf
ρnf

θ(T − T∞)− σnf
ρnf

B2
0 sin2 γ

ax

(1− ct)
f

′
,

=
a2xµnf

ρnfνf (1− ct)2
f

′′′
+

bxg(ρβ)nf
(1− ct)2ρnf

θ − axB2
0σnf

(1− ct)ρnf
sin2 γf

′
. (3.6)

From (3.5) and (3.6) we get:

• a2x

(1− ct)2

[
µnf
ρnfνf

f
′′′

+
(ρβ)nf
a2ρnf

gbθ − σnf
aρnf

B2
0(1− ct)f ′

sin2 γ

]
=

ax

(1− ct)2
[
cf

′
+
c

2
ηf

′′
+ a(f

′
)2 − aff ′′

]
⇒ c

a
(f

′
+
η

2
f

′′
) + (f

′
)2 − ff ′′

=
µnf
ρnfνf

f
′′′

+
(ρβ)nf
a2ρnf

gbθ

− σnf
aρnf

B2
0(1− ct)f ′

sin2 γ,
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⇒ ρnfνf
µnf

[
s(f

′
+
η

2
f

′′
) + (f

′
)2 − ff ′′

]
= f

′′′
+

(ρβ)nfνf
a2µnf

gbθ

− σnfνf
aµnf

B2
0(1− ct)f ′

sin2 γ,

⇒ f
′′′

+
ρnfνf
µnf

ff
′′ − ρnfνf

µnf
(f

′
)2 − ρnfνf

µnf
s(f

′
+
η

2
f

′′
) +

(ρβ)nfνf
a2µnf

gbθ

− σnfνf
aµnf

B2
0(1− ct)f ′

sin2 γ = 0,

⇒ f
′′′

+
(1− φ)2.5

µf

[
((1− φ) ρf + φρp) νfff

′′ − ((1− φ) ρf + φρp) νf (f
′
)2

− ((1− φ) ρf + φρp) νfs(f
′
+
η

2
f

′′
) +

(
(1− φ) (ρβ)f + φ (ρβ)p

)
gbνf

a2
θ

−((1− φ)σf + φσp)νf
a

B2
0(1− ct)f ′

sin2 γ

]
= 0,

⇒ f ′′′ + (1− φ)2.5
(

(1− φ) + φ
ρp
ρf

)
ff

′′ −
(

(1− φ) + φ
ρp
ρf

)
(f

′
)2

− s
(

(1− φ) + φ
ρp
ρf

)(
f

′
+
η

2
f

′′
)

+
(1− φ) (ρβ)f + φ(ρβ)p

a2ρf
gbθ

− σnf
aρf

B2
0(1− ct)f ′

sin2 γ = 0,

⇒ f
′′′

+ (1− φ)2.5
[
D1ff

′′ −D1(f
′
)2 −D1s

(
f

′
+
η

2
f

′′
)

+ (ρβ)f

(
(1− φ) + φ

(ρβ)p
(ρβ)f

)
gbθ

a2ρf
− σnf
aρf

B2
0(1− ct)f ′

sin2 γ

]
= 0.

Now finally the dimensionless form of (3.2) is:

f
′′′

+(1−φ)2.5
[
D1

(
ff

′′ −
(
f

′)2 − s(f ′
+
η

2
f

′′
))

+ λD2θ −Mf
′
sin2 γ

]
= 0,

To convert the energy equation (3.3) into an ordinary differential equation,

we first calculate the following derivative [45]:

• θ (η) =
T − T∞
Tw − T∞

,

⇒ T = T∞ + (Tw − T∞) θ

⇒ T = T∞ +
bx

(1− ct)2
θ.

• ∂T

∂x
=

b

(1− ct)2
θ.

• ∂T

∂y
=

bx

(1− ct)2
θ
′
√

a

(1− ct)νf
.

• ∂2T

∂y2
=

abx

νf (1− ct)3
θ
′′
.

• ∂T

∂t
=

∂

∂t

(
bx

(1− ct)2
θ

)
,

=
2bcx

(1− ct)3
θ +

bxy

(1− ct)2
θ
′ ∂

∂t

√
a

νf (1− ct)
y,



IMF and NU Heat source/sink 25

=
2bcx

(1− ct)3
θ +

bcxy

2(1− ct) 7
2

θ
′
√

a

νf
,

=
bcx

(1− ct)2

(
2θ +

y

2
θ
′
√

a

νf (1− ct)

)
.

• ∂T

∂x
=

∂

∂x

(
bx

(1− ct)2
θ

)
,

=
bθ

(1− ct)2
.

• ∂T

∂y
=

∂

∂y

(
bx

(1− ct)2
θ

)
,

=
bx

(1− ct)2
θ
′ ∂

∂y

√
a

νf (1− ct)
y,

=
bx

(1− ct)2
θ
′
√

a

νf (1− ct)
.

• ∂2T

∂y2
=

bx

(1− ct)2
θ
′′
√

a

νf (1− ct)
∂

∂y

(√
a

νf (1− ct)
y

)
,

=
abx

νf (1− ct)3
θ
′′
.

• µnf
νnf

= ρnf ,

1

νnf
=
ρnf
µnf

,

νf
νnf

=
νfρnf
µnf

,

=
νf [(1− φ)ρf + φρp] (1− φ)2.5

µf
,

=
νf (1− φ)2.5

µf
ρf

[
(1− φ) + φ

ρp
ρf

]
,

=
µf (1− φ)2.5ρf

ρfµf
D1,

= D1(1− φ)2.5.

• νf
αnf

= νf
(ρCp)nf
knf

= νf
(ρCp)nf
D3kf

,

=
νf

D3knf

[
(1− φ) (ρCp)f + φ (ρCp)p

]
,

=
νf
D3kf

(ρCp)f

[
(1− φ) + φ

(ρCp)p
(ρCp)f

]
,

=
PrD2

D3

.

Hence dimensionless form of (3.3) becomes:
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• ∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

bcx

(1− ct)3

(
2θ +

y

2
θ
′
√

a

νf (1− ct)

)

+

(
ax

1− ct

)(
bθ

(1− ct)2

)
f

′ −
(√

aνf
(1− ct)

f

)(
bxθ

′

(1− ct)2
√

a

νf (1− ct)

)
,

⇒ ∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

bx

(1− ct)3
[
c
(

2θ +
η

2
θ
′
)

+ af
′
θ − afθ′

]
(3.7)

Similarly R.H.S of (3.3), can be formulated as

abxαnfθ
′′

νf (1− ct)3
+

axknf
xνnf (ρCp)nf (1− ct)

[
A(Tw − T∞)f

′
+B(T − T∞)

]
(3.8)

From (3.7) and (3.8) we get:

• abxαnf
νf (1− ct)3

[
θ
′′

+
knf (Tw − T∞)

xνnf
(Af

′
+Bθ)

(1− ct)2νf
bαnf (ρCp)nf

]
=

bx

(1− ct)3
[
c(2θ +

η

2
θ
′
) + af

′
θ − afθ′

]
,

⇒ aαnf
νf

[
θ
′′

+
(1− ct)2bxknf
x(1− ct)2νnf

(Af
′
+Bθ)

νf
bαnf (ρCp)nf

]
= c

(
2θ +

η

2
θ
′
)

+ a
(
f

′
θ − fθ′)

,

⇒ θ
′′

+
knf
νnf

(Af
′
+Bθ)

νf
αnf (ρCp)nf

=
νf
αnf

[ c
a

(2θ +
η

2
θ
′
) + θf

′ − θ′
f
]
,

⇒ θ
′′

+ (Af
′
+Bθ)

νfαnf (ρCp)nf
αnf (ρCp)nfνnf

=
νf
αnf

[ c
a

(2θ +
η

2
θ
′
) + θf

′ − θ′
f
]
,

⇒ θ
′′

+
νf
νnf

(Af
′
+Bθ) =

νf
αnf

[ c
a

(2θ +
η

2
θ
′
) + θf

′ − θ′
f
]
,

⇒ θ
′′

+ D1(1 − φ)2.5(Af
′
+ Bθ) +

PrD2

D3

[
fθ

′ − f ′
θ − s(2θ +

η

2
θ
′
)
]

= 0.

The procedure of converting boundary conditions into dimensionless form

has been discussed below:

• u = Uw(x, t) =
ax

1− ct
, at y = 0

u =
ax

1− ct
f

′
(η),

⇒ ax

1− ct
f

′
(η) =

ax

1− ct
,

⇒ f
′
(η) = 1, at η = 0

• T = Tw = T∞ +
bx

(1− ct)2
, at y = 0

θ(η) =
T − T∞
Tw − T∞

,

⇒ T − T∞ =
bx

(1− ct)2
,

⇒ θ(η) (Tw − T∞) = T − T∞,
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⇒ θ(η) (Tw − T∞) =
bx

(1− ct)2
,

⇒ θ(η)(
bx

(1− ct)2
) =

bx

(1− ct)2
,

⇒ θ(η) = 1, at η = 0

• ν = νw(t) = −
√

aνf
1− ct

fw, at y = 0

ν = −∂ψ
∂x

= −
√

aνf
1− ct

f(η),

⇒ −
√

aνf
1− ct

f(η) = −
√

aνf
1−ctfw,

⇒ f(η) = fw, at η = 0

• u = 0, at y =∞

⇒ ax

1− ct
f

′
(η) = 0,

⇒ f
′
= 0 at η =∞

• T = T∞, at y =∞

⇒ θ(η) =
T∞ − T∞
Tw − T∞

,

⇒ θ(η) = 0, at y =∞

Finally, the following ordinary differential equations is obtained:

f
′′′

+ (1− φ)2.5
[
D1(ff

′′ − (f
′
)2 − s(f ′

+
η

2
f

′′
)) + λD2θ −Mf

′
sin2 γ

]
= 0. (3.9)

θ
′′

+D1(1− φ)2.5(Af
′
+Bθ) +

PrD2

D3

[
fθ

′ − f ′
θ − s(2θ +

η

2
θ
′
)
]

= 0, (3.10)

with the boundary conditions:

f
′
= 1, f = fw, θ = 1, at η = 0,

f
′
= 0, θ = 0, at η →∞.

 (3.11)

The following expression refers to different parameters used in the above equations

[40]:

Pr =
(ρCp)fνf

kf
, M =

σnfB
2
0

aρf
(1− ct),

S =
c

a
, λ =

gb(ρβ)f
a2ρf

.
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Here, M is the magnetic field parameter, Pr is the prandtl number, S is the

unsteadiness parameter and λ is the buoyancy or convection parameter. Also,

λ > 0 and λ < 0 correspond to assisting and opposing flow while λ = 0 is for

forced convection flow situation.

D1, D2 and D3 are constants given by:

D1 = (1− φ) +
ρp
ρf
φ, D2 = (1− φ) +

(ρCp)p
(ρCp)f

φ,

D3 =
knf
kf

.

3.5 Thermophysical Properties ofoNanofluid

The heat capacity of the nanofluid Cp , electrical conductivity σnf , density of the

nanofluid ρnf , thermal diffusivity αnf and the thermal expansion coefficient β are

presented as follows, respectively [40]

ρnf = (1− φ)ρf + φρp, σnf = (1− φ)σf + φσp,

(ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)p, αnf =
knf

(ρCp)nf
,

(ρβ)nf = (1− φ)(ρβ)f + φ(ρβ)p,

µnf =
µf

(1− φ)2.5
, νf =

µf
ρf
.

3.6 Solution Methodology

To find the numerical solution (3.9) and (3.10) equations are first converted into

first order differential equations with corresponding boundary conditions and can

be solution obtained by shooting technique. We must choose a suitably finite value

of η in this method. Two convert (3.9) and (3.10) into system of first order ODE’s

the following notations are opted:

f = y1, f
′
= y

′

1, f
′′′

= y
′

3, θ = y4, θ
′′

= y
′

5,
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Further denote

f = y1, y
′

1 = y2, y
′

2 = y3, f
′′′

= y
′

3, θ = y4, y
′

4 = y5, θ
′′

= y
′

5.

As consequence of above notations the following system of ODE,s is acquired:

y
′

1 = y2, y1(0) = fw,

y
′

2 = y3, y2(0) = 1,

y
′

3 = −(1− φ)2.5
[
D1(y1y3 − y22 − s(y2 +

η

2
y3))

+D2λy4 −M sin2 γy2
]
, y3(0) = p,

y
′

4 = y5, y4(0) = 1,

y
′

5 = −(1− φ)2.5D1(Ay2 +By4)−
PrD2

D3

[y1y5

−y2y4 − s(
η

2
y5 + 2y4)

]
, y5(0) = q,



(3.12)

In order to achieve approximate numerical results, (3.12) is solved by RK-4

method. The domain of our problem is considered to be bounded [0, η∞],

where η∞ is a positive number for which the variation in the behavior of flow is

negligible after η = η∞. p and q are assumed as missing conditions for the solution

of (3.12) such that:

y2(η∞, p, q) = 0

y4(η∞, p, q) = 0.

 (3.13)

To update the values of p and q, Newton’s iterative scheme has been used which

has the following formula:

pn+1

qn+1

 =

pn
qn

−
∂y2∂p ∂y2

∂q

∂y4
∂p

∂y4
∂q

−1
(pn,qn)

y2(η∞, pn, qn)

y4(η∞, pn, qn)

 , n = 0, 1, 2... (3.14)

to start the iterative process, choose p = p0, q = q0.

To incorporate Newton’s method, we further use the following notations:
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∂y1
∂p

= y6,
∂y2
∂p

= y7,
∂y3
∂p

= y8,

∂y4
∂p

= y9,
∂y5
∂p

= y10,

∂y1
∂q

= y11,
∂y2
∂q

= y12,
∂y3
∂q

= y13,

∂y4
∂q

= y14,
∂y5
∂q

= y15,


(3.15)

Newton’s formula takes the following form after using the new notation:

pn+1

qn+1

 =

pn
qn

−
y7 y12

y9 y14

−1
(pn,qn)

y2(η∞, pn, qn)

y4(η∞, pn, qn)

 (3.16)

Differentiating equations (3.12), first w.r.t. p and then w.r.t. q, we get the

following ten first order ODEs along with the associated initial conditions.

y
′

6 = y7, y6(0) = 0,

y
′

7 = y8, y7(0) = 0

y
′

8 = −(1− φ)2.5 [D1 (y1y8 + y3y6 − 2y2y7

−s(y7 +
η

2
y8)
)

+D2λy9 −M sin2 γy7

]
, y8(0) = 1,

y
′

9 = y10, y9(0) = 0,

y
′

10 = −(1− φ)2.5D1(Ay7 +By9)−
PrD2

D3

[y1y10

+y5y6 − y2y9 − y4y7 − s
(

2y9 +
η

2
y10

)]
, y10(0) = 0,

y
′

11 = y12, y11(0) = 0,

y
′

12 = y13, y12(0) = 0,

y
′

13 = −(1− φ)2.5 [D1(y1y13 + y3y11 − 2y2y12

−s(y12 +
η

2
y13)) +D2λy14 −M sin2 γy12

]
, y13(0) = 0,

y
′

14 = y15, y14(0) = 0,

y
′

15 = −(1− φ)2.5D1(Ay12 +By14)−
PrD2

D3

[y1y15

+y5y11 − y2y14 − y4y12 − s(2y14 +
η

2
y15)

]
, y15(0) = 1.



IMF and NU Heat source/sink 31

The iterative process is repeated until the criteria listed below are met:

max {|y2(η∞, pn, qn)|, |y4(η∞, pn, qn)|} < ε∗

where ε∗ is an arbitrarily small positive number. Here ε∗ is taken as 10−10.

3.7 Validation of Code

For validation of the numerical code Tables 3.2 and 3.3 have been presented and

the result are compared with the results of Brinkman model [50]. In Tables 3.2

and 3.3 shows, an excellent agreement between the compared results and those of

already published in the literature:

Table 3.2: Value of −f ′′
(0) for various A, B, and φ with Pr = 6.785, γ = π

3 ,
λ = 0.5, and fw = S = M = 0.1.

A B φ Cu Current Cu Current Al2O3

-0.5 -0.5 0.05 1.13901 1.02053 1.15455 1.03772
-0.5 -0.5 0.15 1.26227 1.00119 1.27560 1.01758
-0.5 0.0 0.05 1.13772 1.01947 1.15364 1.03687
-0.5 0.0 0.15 1.26009 0.99979 1.27431 1.01655
-0.5 0.5 0.05 1.13637 1.01838 1.15294 1.03611
-0.5 0.5 0.15 1.25767 0.99834 1.27371 1.01566
0.0 -0.5 0.05 1.12971 1.01175 1.15015 1.03435
0.0 -0.5 0.15 1.25236 0.992261 1.27087 1.01443
0.0 0.0 0.05 1.12769 1.01013 1.14813 1.03272
0.0 0.0 0.15 1.24869 0.989996 1.26789 1.01258
0.0 0.5 0.05 1.12549 1.0084 1.14592 1.03098
0.0 0.5 0.15 1.24412 0.987451 1.26434 1.01053
0.5 -0.5 0.05 1.12028 1.00285 1.15269 1.03734
0.5 -0.5 0.15 1.24223 0.983153 1.27236 1.01676
0.5 0.0 0.05 1.11753 1.00065 1.15097 1.03595
0.5 0.0 0.15 1.23698 0.979972 1.26990 1.01520
0.5 0.5 0.05 1.11447 0.998258 1.14910 1.03448
0.5 0.5 0.15 1.23015 0.97628 1.26705 1.01351

3.8 Results and Discussion

This section containsothe numerical results haveobeen displayed in graphicaloformat.

For numerical calculations,odifferent physical properties ofowater, copper Cu and

alumina Al2O3 are considered. The effects of variousoparameters such as nanopar-

ticlesovolume fraction φ, Prandtalonumber Pr, chemical reaction γ, Magnetic pa-

rameter M , unsteadiness parameter S, bouyancy or convection parameter λ, on
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Table 3.3: Value of −θ′(0) for various A, B, and φ with Pr = 6.785, γ = π
3 ,

λ = 0.5, and fw = S = M = 0.1

A B φ Cu Al2O3 Current Cu Current Al2O3

-0.5 -0.5 0.05 3.47169 3.45288 2.59682 2.56815
-0.5 -0.5 0.15 2.84113 2.78241 2.26934 2.19463
-0.5 0.0 0.05 3.37271 3.37184 2.48062 2.47153
-0.5 0.0 0.15 2.69323 2.68589 2.10664 2.08563
-0.5 0.5 0.05 3.27066 3.2888 2.36431 2.37408
-0.5 0.5 0.15 2.53558 2.5857 1.94786 1.97532
0.0 -0.5 0.05 3.27349 3.2836 3.20272 3.21015
0.0 -0.5 0.15 2.5905 2.54533 2.71891 2.72300
0.0 0.0 0.05 3.16522 3.19592 3.09143 3.12003
0.0 0.0 0.15 2.42212 2.49284 2.55864 2.62108
0.0 0.5 0.05 3.05233 3.10533 2.97520 3.02681
0.0 0.5 0.15 2.23725 2.38041 2.38441 2.51424
0.5 -0.5 0.05 3.07389 3.1132 3.81307 3.83940
0.5 -0.5 0.15 2.33646 2.41486 3.19729 3.24948
0.5 0.0 0.05 2.95612 3.01872 3.72156 3.76518
0.5 0.0 0.15 2.14762 2.29781 3.06671 3.16601
0.5 0.5 0.05 2.83218 2.92044 3.62723 3.68918
0.5 0.5 0.15 1.93409 2.17266 2.92889 3.07979

velocity andotemperature have been analyzed.

FIGURE 3.2 and 3.3 show how differentotypes of nanofluids behaveoin terms of

velocityoand temperature. It has been noted that the thickness of both the mo-

mentum andothermal boundary layers changes as the type of nanoparticle changes.

Ag-water nanofluid shows the lower velocity than other nanofluids while titanium

dioxide nanofluid shows the lowest temperature profile.

In FIGURE 3.4, 3.5, 3.6 and 3.7 the effect ofomagnetic field parameterMoon

the temperature profileoand velocity profile forothe copper water andoAlumina

water of theonanofluid can be seen.oIt has been noted that when theomagnetic pa-

rameter M is increased,othe velocity profile inothe boundary layer decreasesoand

the temperature profileoincreases by increasingothe magnetic parameter M . This

is due toothe Lorentz force, whichois created when aotransverse magnetic field

isoapplied to an electricallyoconducting fluid. Thisoforce slows down theomotion

of the fluidoand increases the temperature.

FIGURE 3.8, 3.9, 3.10 and 3.11 depict the influenceoof suction/injection param-

eteroon velocity distribution f(x)oand temperature distribution θ(η), for both
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cases ofoCu-water and Al2O3-water. It has beenonoted that by increasing the suc-

tion parameter fw, the velocity andotemperature distribution are reduced.oOn the

other hand,ofigures exhibits the oppositeobehavior for fw < 0 (injection). Increase

in fw leads to speeding up and cooling down ofothe fluid flow. Asoan output the

decreasesoin heat flux isoseen in boundary layerodomain.

FIGURE 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18 and 3.19 show how differentovalues

of heatogeneration source (A > 0 and B > 0) and heat absorption sink (A < 0)

and (B < 0) affect nanofluid velocity andotemperature distribution across the

boundaryolayer. The heat sourceoincreases theoboundary layer thickness. On

the otherohand the opposite resultooccurs with heat sinkoas shown Figures 3.12,

3.13 and 3.16, 3.17. The pure fluid’s velocity is higher than Cu-water’s velocity,

whereas the oppositeoresults occur for Al2O3-water. Furthermore, it is obvious

from Figures 3.14, 3.15 and 3.18, 3.19 that the thermaloboundary layer decreases

for (A < 0and B < 0), The interior heatosink can be usedoto successfully coolothe

regime physically. Theoheat sources A > 0 and B > 0, on the otherohand, show

the reverseopattern. It’s worth notingothat in the nanofluidoscenario, the impacts

ofoheat source/sink parameterso(A and B) on the velocityoand temperature pro-

file areostronger than in theopure fluid case.

FIGURE 3.20, 3.21, 3.22 and 3.23 the effect ofothe convection parameter λ on

the velocityoand temperature profile ofocopper water and Aluminaowater is dis-

cussed. Convectionois the mechanism ofoheat transfer through aofluid in the pres-

enceoof bulk of fluidomotion. In the caseoof forced convection theofluid is forced

tooflow over a surface.oDue to this reasonoit is observed thatothe thickness of ve-

locityoprofile of the hydrodynamicoboundary layer increase whenothe convection

parameter λ isoincreased.

FIGURE 3.24, 3.25, 3.26 and 3.27 demonstrate the magneticofield inclination an-

gle γ on theovelocity distributions. It is oobvious that increasing the oinclination

angle γ decreases the velocityoprofile and increases theotemperature profile of

theonanofluids. The reason forothis is that asothe angle of inclinationoincreases,

the magnetic fieldobecomes stronger. Because ofothe stronger magnetic fields,oIt

creates a forceothat opposes the flowo(Lorentz force). The thickness ofothe mo-

mentum boundary layerois reduced as aoresult of this force.oDue to the factothat
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M is directly proportionaloto the sin 2γ hence for γ = 0 has no consequenceoon

velocity while magnetic field effects when γ = 90o

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Ag
Cu
Al

2
O

3

TiO
2

S=M=f
w

=0.1 , A=B= =0.5

Figure 3.2: Velocity profile for different types of nanofluids
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Figure 3.3: Temperature profile for different types of nanofluids
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Figure 3.4: Effects of M on velocity distribution for Cu-water
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Figure 3.5: Effects of M on velocity profile for Alumina-water
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Figure 3.6: Effects of M on temperature profile for Cu-water
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Figure 3.7: Effects of M on temperature distribution for Al2O3-water
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Figure 3.8: Effects of fw on velocity profile for Cu-water
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Figure 3.9: Effects of fw on velocity distribution for Al2O3-water
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Figure 3.10: Effects of fw on temperature distribution for Cu-water
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Figure 3.11: Effects of fw on temperature distribution for Al2O3-water
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Figure 3.12: Effects of A on velocity distribution for Cu-water
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Figure 3.13: Effects of A on velocity distribution for Al2O3-water
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Figure 3.14: Effects of A on temperature distribution for Cu-water
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Figure 3.15: Effects of A on temperature distribution for Al2O3-water
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Figure 3.16: Effects of B on velocity distribution for Cu-water
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Figure 3.17: Effects of B on velocity distribution for Al2O3-water
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Figure 3.18: Effects of B on temperature distribution for Cu-water
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Figure 3.19: Effects of B on temperature distribution for Al2O3-water
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Figure 3.20: Effects of λ on velocity distribution for Cu-water
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Figure 3.21: Effects of λ on velocity distribution for Al2O3-water
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Figure 3.22: Effects of λ on temperature distribution for Cu-water
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Figure 3.23: Effects of λ on temperature distribution for Al2O3-water
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Figure 3.24: Effects of γ on velocity profile for Cu-water
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Figure 3.25: Effects of γ on velocity profile for Al2O3-water
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Figure 3.26: Effects of γ on temperature distribution for Cu-water
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Figure 3.27: Effects of γ on temperature for Al2O3-water



Chapter 4

Unsteady Nanofluids Flow

through Joule Heating, Thermal

Radiation and Porous Medium in

the Presence of Magnetic Field

4.1 Introduction

In this chapter, the work of Elgazery [40] is extended by considering nanoflu-

ids flow over aopermeable unsteady stretching surfaceowith non-uniform heat

source/sinkoin the presence ofoinclined magnetic field over porous medium, vis-

cous dissipation and Joule heating. The non-linear partial differential equations

of velocity and temperature profiles are transformed into a set of ordinary dif-

ferential equations utilizing suitable similarity transformations. By performing

the shooting technique, the numerical solution of transformed governing ordinary

differential equations is obtained. Utilizing MATLAB tool, the temperature are

analyzed for pertinent variables. Through graphs the dynamics of various vari-

ables of suction parameter, stretching parameter, species diffusivity coefficient and

chemical reaction parameter are displayed.

47
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4.2 Mathematical Modeling

Consider an unsteady,otwo-dimensional stretched surface with a non-uniformoheat

source/sink, viscous dissipation, and Joule heating in the presence of anoinclined

magnetic field over a porous medium. The surface velocity has been represented by

Uw(x, t) =
ax

1− ct
.

The basic mathematical model describing the flow has been shown, which contains

the PDEs of continuity equation, momentum, and energy transfer.

Figure 4.1: The physical model and coordinate system

Continuity Equation:

∂u

∂x
+
∂v

∂y
= 0 (4.1)

Momentum Equation:

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
=
µnf
ρnf

∂2u

∂y2
+g

(ρβ)nf
ρnf

(T−T∞)− σnf
ρnf

B2
0 sin2 γu− 1

k

µnf
ρnf

u (4.2)
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Energy Equation:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
+

q
′′′

(ρCP )nf
+

µnf
(ρCp)nf

(
∂u

∂y
)2

+
1

(ρCp)nf
(
∂qr
∂y

) +
σnf

(ρCp)nf
B2

0u
2 sin2 γ

 (4.3)

The boundary conditions for the above equations are:

u = uw(x, t) =
ax

1− ct
,

v = vw(t) = −
√

avf
1− ct

fw,

T = Tw(x,t) = T∞ +
bx

(1− ct)2
, at y = 0,

u = 0, T = T∞, as y →∞


(4.4)

Here, u and v are components of velocity in the direction of x and y respectively,

t is the time, the fluid parameter is T , the fluid density is ρ, the fluid kinematic

viscosity is ν, the fluid thermal diffusivity is α and the specific heat is Cp.

Following similarity transformations are used to convert the energy equation (4.2)

and concentration equation (4.3) into dimensionless form

η =

√
a

vf (1− ct)
y, ψ(x, y, t) =

√
avf

1− ct
xf(η),

θ(η) =
T − T∞
Tw − T∞

, u =
∂ψ

∂y
=

a

(1− ct)
xf

′
(η),

v = −∂ψ
∂x

= −
√

avf
1− ct

f(η),

The detailed conversion of continuity equation (4.1) is already discussed in chapter

3. The conversion of (4.2) is presented below.To achieve this goal first of L.H.S of

(4.2) is transformed as follows:

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
=

acxf
′

(1− ct)2
+

acxy

2(1− ct) 5
2

√
a

vf
f

′′
+

a2x

(1− ct)2
(f

′
)2− xa2

(1− ct)2
ff

′′
,

⇒ ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

xa

(1− ct)2
[
cf

′
+
cη

2
f

′′
+ a(f ′)2 − aff ′′

]
. (4.5)

The R.H.S of (4.2) is formulated as:
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µnf
ρnf

∂2u

∂y2
+ g

(ρβ)nf
ρnf

(T − T∞)− σnf
ρnf

B2
0u sin2 γ − µnf

ρnf

1

K
u =

µnf
ρnf

a2x

vf (1− ct)2
f

′′′

+g
(ρβ)nf
ρnf

θ(T − T∞)− σnf
ρnf

B2
0 sin2 γ

ax

(1− ct)
f

′ − µnf
ρnf

1

K

ax

(1− ct)
f

′
,

⇒ =
µnf
ρnf

a2x

vf (1− ct)2
f

′′′
+

(ρβ)nf
ρnf

bxg

(1− ct)2
θ − σnf

ρnf

axB2
0

(1− ct)
sin2 γf

′

−µnf
ρnf

1

K

ax

(1− ct)
f

′
.

(4.6)

Combining (4.5) and (4.6) we get
a2x

(1− ct)2

[
µnf
ρnfvf

f
′′′

+
(ρβ)nf
a2ρnf

gbθ − σnf
aρnf

B2
0(1− ct)f ′

sin2 γ

]
−µnf
ρnf

1

K

ax

(1− ct)
f

′
=

ax

(1− ct)2
[
cf

′
+
c

2
ηf

′′
+ a(f

′
)2 − aff ′′

]
,

⇒ ρnfvf
µnf

[
s(f

′
+
η

2
f

′′
) + (f

′
)2 − ff ′′

]
+
ρnfνf
µnf

µnf
ρnf

(1− ct)
aK

f
′

= f
′′′

+
(ρβ)nfvf
a2µnf

gbθ − σnfvf
aµnf

B2
0(1− ct)f ′

sin2 γ,

⇒ f
′′′

+ (1− φ)2.5
[

((1− φ)ρf + φρp) vf
µf

ff
′′ − ((1− φ)ρf + φρp) vf

µf
(f

′
)2

−((1− φ)ρf + φρp) vf
µf

s
(
f

′
+
η

2
f

′′
)

+
((1− φ)(ρβ)f + φ(ρβ)p) gbvf

a2µf
θ

−((1− φ)σf + φσp) vf
aµf

B2
0(1− ct)f ′

sin2 γ

]
− νf (1− ct)

aK
f

′
= 0,

⇒ f
′′′

+ (1− φ)2.5
[(

(1− φ) + φ
ρp
ρf

)
ff

′′ −
(

(1− φ) + φ
ρp
ρf

)
(f

′
)2

−
(

(1− φ) + φ
ρp
ρf

)
s
(
f

′
+
η

2
f

′′
)

+
((1− φ)(ρβ)f + φ(ρβ)p)

a2ρf
gbθ

−σnf
aρf

B2
0(1− ct)f ′

sin2 γ

]
− νf (1− ct)
a(1− ct)k1

f
′
= 0,

⇒ f
′′′

+ (1− φ)2.5
[
D1ff

′′ −D1(f
′
)2 −D1s

(
f

′
+
η

2
f

′′
)

+ (ρβ)f ((1− φ)

+φ
(ρβ)p
(ρβ)f

)
gb

a2ρf
θ
σnf
aρf

B2
0(1− ct)f ′

sin2 γ

]
− 1

D
f

′
= 0,

⇒ f
′′′

+ (1− φ)2.5
[
D1

(
ff

′′ −
(
f

′)2 − s (f ′
+ η

2
f

′′))
+ λD2θ

−Mf
′
sin2 γ

]
− df ′

= 0

The necessary step to convert the energy equation (4.3) into dimensionless form are

as follows.The detailed conversion of L.H.S of energy equation is already discussed

in Chapter 3.
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

bx

(1− ct)3
[
c(2θ +

η

2
θ
′
) + a(f

′
θ − fθ′

)
]
.
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Furthermore, the R.H.S of (4.3) have been transformed into dimensionless form as

shown below. The Rosseland approximation can be considered for radiative heat

flux. Using Taylor series, we might expand the temperature difference T 4 about

T∞, for smaller values of temperature constant. The formula for radiative heat

flux is as follows:

qr = −4σ∗

3k∗
∂T 4

∂y
,

T 4 = 4T 3
∞T − 3T 4

∞,

⇒ T = T∞ + (Tw − T∞)θ,

⇒ T 4 = 4T 3
∞[T∞ + (Tw − T∞)θ]− 3T 4

∞,

∂T 4

∂y
= 4T 3

∞(Tw − T∞)θ
′
√

a

νf (1− ct)
,

qr = −4σ∗

3k∗
4T 3
∞θ

′
√

a

νf (1− ct)
(Tw − T∞),

∂qr
∂y

= −16σ∗

3k∗
T 3
∞θ

′′ a

νf (1− ct)
(Tw − T∞),

(
∂u

∂y
)2 =

a3x2

νf (1− ct)3
(f

′′
)2.

Now considering the R.H.S of (4.3):

αnf
∂2T

∂y2
+

q
′′′

(ρCP )nf
+

µnf
(ρCp)nf

(
∂u

∂y
)2 +

1

(ρCp)nf
(
∂qr
∂y

) +
σnfB

2
0u

2

(ρCp)nf
sin2 γ

=
αnfabx

νf (1− ct)3
θ
′′

+
axknf

x(1− ct)νnf (ρCp)nf
[
A(Tw − T∞)f

′
+B(T − T∞)

]

+
1

(ρCp)nf

[
a3x2µf

νf (1− ct)3
(f

′′
)2 +

a2x2σnfB
2
0

(1− ct)2
(f

′
)2 sin2 γ − 16σ∗abxT 3

∞
3k∗νf (1− ct)3

θ
′′
]
.

Combining L.H.S and R.H.S of energy equation (4.3) we get:

bx

(1− ct)3
[
c(2θ +

η

2
θ′) + a(f ′θ − fθ′)

]
=

abxαnf
(1− ct)3νf

[
θ′′ +

bx(1− ct)2knf
x(1− ct)2νnf

(Af ′

+Bθ)
νf

bαnf (ρCp)nf

]
+

ax

(ρCp)nf (1− ct)3
[
σnfB

2

0ax(1− ct)(f ′
)2 sin2 γ
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+ρfa
2x(f

′′
)2 − 16σ∗b

3k∗νf
T 3
∞θ

′′
]
,

⇒ νf
αnf

[ c
a

(2θ +
η

2
θ
′
) + f

′
θ − fθ′

]
= θ

′′
+

knfνf
νnfαnf (ρCp)nf

(
Af

′
+Bθ

)
+

νf
bαnf (ρCp)nf

[
Ma2xρff

′
sin2 γ + a2xρf (f

′′
)2 − 16σ∗b

3k∗νf
T 3
∞θ

′′
]
,

⇒ PrD2

D3

[
s
(

2θ +
η

2
θ
′
)

+ f
′
θ − fθ′

]
= θ

′′
+

αnf (ρCp)nfνf
νnfαnf (ρCp)nf

(
Af

′
+Bθ

)
+
PrD2

D3

[
a2xρf
b(ρCp)nf

(
M(f

′
)2 sin2 γ + (f

′′
)2
)
− 16σ∗b

3k∗bνfρ(Cp)nf
T 3
∞θ

′′
]
,

⇒ θ
′′

+D1(1− φ)2.5(Af
′
+Bθ) +

PrD2

D3

[
fθ

′ − f ′
θ − s

(
2θ +

η

2
θ
′
)]

+
PrD2

D3

 gx(ρβ)f

λ(ρCp)f

(
(1− φ) + φ

(ρCp)p
(ρCp)f

)(M(f
′
)2 sin2 γ + (f

′′
)2)

− 16σ∗T 3
∞

3k∗νf (ρCp)f [(1− φ) + φ
(ρCp)p
(ρCp)f

]

θ
′′

 = 0,

⇒ θ
′′

+D1(1− φ)2.5
(
Af

′
+Bθ

)
+
PrD2

D3

[
fθ

′ − f ′
θ − s

(
2θ +

η

2
θ
′
)]

+
PrD2

D3

gx(ρβ)f
λ(ρCp)fD2

[
M(f

′
)2 sin2 γ + (f

′′
)2
]
− PrD2

D3

16σ∗T 3
∞

3k∗νf (ρCp)fD2

θ
′′

= 0,

⇒ θ
′′

+D1(1− φ)2.5
(
Af

′
+Bθ

)
+
PrD2

D3

[
fθ

′ − f ′
θ − s(2θ +

η

2
θ
′
)
]

+
Pr
D3

gx(ρβ)f
λ(ρCp)f

[
M(f

′
)2 sin2 γ + (f

′′
)2
]
− Pr
D3

16σ∗T 3
∞

3k∗kfPr
θ
′′

= 0,

⇒ θ
′′

+D1(1− φ)2.5
(
Af

′
+Bθ

)
+
PrD2

D3

[
fθ

′ − f ′
θ − s(2θ +

η

2
θ
′
)
]
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+
Pr
D3

gx(ρβ)f
λ(ρCp)f

[
M(f

′
)2 sin2 γ + (f

′′
)2
]
− 4R

3D3

θ
′′

= 0,

⇒ θ
′′

+D1(1− φ)2.5
(
Af

′
+Bθ

)
+
PrD2

D3

[
fθ

′ − f ′
θ − s(2θ +

η

2
θ
′
)
]

+
a2bgPrρfEc(ρβ)f
a2bD3gρf (ρβ)f

[
M(f

′
)2 sin2 γ + (f

′′
)2
]
− 4R

3D3

θ
′′

= 0,

⇒
(

1− 4R

3D3

)
θ
′′

+D1(1− φ)2.5
(
Af

′
+Bθ

)
+
PrD2

D3

[
fθ

′ − f ′
θ

−s(2θ +
η

2
θ
′
)
]

+
PrEc
D3

[
M(f

′
)2 sin2 γ + (f

′′
)2
]

= 0.

Different parameters used in the above equations have the following formulation:

• R =
4σ∗T 3

∞
kfk∗

.

• λ =
bg(ρβ)f
a2ρf

.

• Ec =
u2

(Cp)f (Tw − T∞)
, ⇒ =

a2x2(1− ct)2

bx(Cp)f (1− ct)2
,

⇒ Ec =
a2x

b(Cp)f
, ⇒ b

a2
Ec =

x

(Cp)f
.

• D =
ak1
νf

, ⇒ 1

D
= d,

• Dax =
(1− ct)k1

x2
, ⇒=

K

x2
, where K = k1(1− ct).

The detailed procedure for the conversion of boundary conditions into the

dimensionless form is similar to that discussed in chapter 3.

The model’s final dimensionless form is:

f
′′′

+ (1− φ)2.5
[
D1

(
ff

′′ − (f
′
)2 − s(f ′

+
η

2
f

′′
)
)

+ λD2θ

−Mf
′
sin2 γ

]
− df ′

= 0.

 (4.7)

(
1− 4R

3D3

)
θ
′′

+D1(1− φ)2.5
(
Af

′
+Bθ

)
+
PrD2

D3

[
fθ

′ − f ′
θ

−s(2θ +
η

2
θ
′
)
]

+
PrEc
D3

[
M(f

′
)2 sin2 γ + (f

′′
)2
]

= 0.

 (4.8)



Nanofluid flow withoJoule Heating, Porosity and Thermal Radiation 54

The transformed boundary conditions are stated below:

f
′
= 1, f = fw, θ = 1, at η = 0,

f
′
= 0, θ = 0, at η →∞

 . (4.9)

4.3 Solution Methodology

This section is focused on the implementation of the shooting method to solve the

transformed ODEs (4.7) and (4.8) depending on the boundary conditions (4.9).

For this purpose, we first convert the system of ODEs into first order ODEs, by

using the following notations:

f = y1, f
′
= y

′

1, f
′′′

= y
′

3, θ = y4, θ
′′

= y
′

5,

Further denote

f = y1, y
′

1 = y2, y
′

2 = y3, f
′′′

= y
′

3, θ = y4, y
′

4 = y5, θ
′′

= y
′

5.

Using the notations, (4.7) and (4.8) can be converted into system of following five

first order ordinary differential equations:

y
′

1 = y2, y1(0) = fw,

y
′

2 = y3, y2(0) = 1,

y
′

3 = −(1− φ)2.5
[
D1

(
y1y3 − y22 − s(y2 +

η

2
y3)
)

+D2λy4

−M sin2 γy2
]
− dy2, y3(0) = p,

y
′

4 = y5, y4(0) = 1,

y
′

5 =

(
3D3

3D3 − 4R

)[
−(1− φ)2.5D1(Ay2 +By4)−

prD2

D3

(y1y5

−y2y4 − s(
η

2
y5 + 2y4)

)
− PrEc

D3

(
My22 sin2 γ + y23

)]
, y5(0) = q,


The RK-4 method will be used to solve the above initial value problem. To obtain

an approximate result, problem’s domain has been defined as [0, η∞] instead of

[0,∞], where η∞ is an appropriate positive real number that is finite. In the



Nanofluid flow withoJoule Heating, Porosity and Thermal Radiation 55

equations listed above, the missing conditions p and q are to be chosen such that

y2(η∞, p, q) = 0

y4(η∞, p, q) = 0.

 (4.10)

To solve the above algebraic equations, the Newton’s method is used which is

governed by the following iterative scheme:

pn+1

qn+1

 =

pn
qn

−
∂y2∂p ∂y2

∂q

∂y4
∂p

∂y4
∂q

−1
(pn,qn)

y2(η∞, pn, qn)

y4(η∞, pn, qn)

 (4.11)

Now use the following notations:

∂y1
∂p

= y6,
∂y2
∂p

= y7,
∂y3
∂p

= y8,

∂y4
∂p

= y9,
∂y5
∂p

= y10,

∂y1
∂q

= y11,
∂y2
∂q

= y12,
∂y3
∂q

= y13,

∂y4
∂q

= y14,
∂y5
∂q

= y15,


(4.12)

As a result of these new notations, the Newton’s iterative scheme gets the form

with (p, q) = (p0, q0):

pn+1

qn+1

 =

pn
qn

−
y7 y12

y9 y14

−1
(pn,qn)

y2(η∞, pn, qn)

y4(η∞, pn, qn)

 (4.13)

Now differentiate the above system of five first order ODEs with respect to each

of the variables p and q to have another system of ten ODEs. Writing all these

ten ordinary differential equations together, we have the following IVP:

y
′

6 = y7, y6(0) = 0,

y
′

7 = y8, y7(0) = 0,

y
′

8 = −(1− φ)2.5 [D1(y1y8 + y3y6 − 2y2y7

−s(y7 +
η

2
y8)) +D2λy9 −M sin2 γy7

]
+ dy7, y8(0) = 1,
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y
′

9 = y10, y9(0) = 0,

y
′

10 =

(
3D3

3D3 − 4R

)[
−(1− φ)2.5D1(Ay7 +By9)

− PrD2

D3

(y1y10 + y5y6 − y2y9 − y4y7

−s(2y9 +
η

2
y10)

)
− PrEc

D3

(2My2y7 sin2 γ + 2y3y8)

]
, y10(0) = 0,

y
′

11 = y12, y11(0) = 0,

y
′

12 = y13, y12(0) = 0,

y
′

13 = −(1− φ)2.5[D1(y1y13 + y3y11 − 2y2y12 − s(y12 +
η

2
y13))

+D2λy14 −M sin2 γy12] + dy12, y13(0) = 0,

y
′

14 = y15, y14(0) = 0,

y
′

15 =

(
3D3

3D3 − 4R

)[
−(1− φ)2.5D1(Ay12 +By14)

− PrD2

D3

(
y1y15 + y5y11 − y2y14 − y4y12 − s(2y14 +

η

2
y15)

)
−PrEc

D3

(2My2y12 sin2 γ + 2y3y13)

]
, y15(0) = 1.

The RK-4 method is used to solve the above system of fifteen equations with initial

guesses p and q. The missing conditions p and q are updated by using Newton’s

scheme. The iterative procedure is stopped when the following condition is met:

max {|y2(η∞, pn, qn)|, |y4(η∞, pn, qn)|} < ε∗

where ε∗ is an arbitrarily small positive number. Here ε∗ is taken as 10−10.

4.4 Representation of Graphs and Tables

A thorough discussion on the graphs and tables has been conducted which con-

tains the impact of velocity and temperature distribution. The impact of different

factors like thermal radiation R, Prandtle number Pr, Casson parameter β and

Eckert number Ec is observed graphically. Numerical results of the skin friction

coefficient and Nusselt number for the distinct values of some fixed parameters are
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shown in Table 4.1 and 4.2.

Table 4.1: Value of −f ′′
(0) for various A, B, and φ with γ =

π

3
,λ = 0.5,

Pr = 6.785, M = S = fw = 0.1, d = 0.1, Ec = 0.3 and R = 0.

A B φ Cu Al2O3

-0.5 -0.5 0.05 1.33780 1.20980
-0.5 -0.5 0.15 1.95248 1.57769
-0.5 0.0 0.05 1.33457 1.20707
-0.5 0.0 0.15 1.94702 1.57397
-0.5 0.5 0.05 1.33113 1.20418
-0.5 0.5 0.15 1.93645 1.56997
0.0 -0.5 0.05 1.34134 3.26667
0.0 -0.5 0.15 1.14266 1.21456
0.0 0.0 0.05 1.33810 1.21193
0.0 0.0 0.15 1.94735 1.57740
0.0 0.5 0.05 1.33449 1.20909
0.0 0.5 0.15 2.02049 1.57326
0.5 -0.5 0.05 2.84204 1.22255
0.5 -0.5 0.15 1.95959 1.58886
0.5 0.0 0.05 1.34638 1.22060
0.5 0.0 0.15 1.95522 1.58611
0.5 0.5 0.05 1.88916 1.21852
0.5 0.5 0.15 1.95017 1.58309

4.5 Results and Discussion

Graphs are usedoto display the numericaloresults. In thisosection for numerical

calculationophysical properties of copperoand alumina are considered. The compu-

tations for various valuesoof volume fraction φ,othe Prandtl number Pr,ochemical

reaction γ, Eckertonumber Ec, Magnetic parameteroM are performed, andohence

the effect ofothese parameters on heatotransfer are discussed.

FIGURE 4.2 and 4.3 explain how differentotypes of nanofluids behaveoin terms

of velocityoand temperature profiles. Thermaloboundary layer thickness and mo-

mentum are observed tooalter as the typeoof nanoparticle changes. Itois observed

that theolower velocity is attainedofor Ag-water fluid whileothe highest velocity

profileocan be seen foroalumina oxide.

In the FIGURE 4.4, 4.5, 4.6 and 4.7 the velocity profileoand temperature profile
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Table 4.2: Value of −θ′(0) for various A, B, and φ with γ =
π

3
,λ = 0.5,

Pr = 6.785, M = S = fw = 0.1, d = 0.1, Ec = 0.3 and R = 0.

A B φ Cu Al2O3

-0.5 -0.5 0.05 2.16355 2.21572
-0.5 -0.5 0.15 2.46836 2.51924
-0.5 0.0 0.05 1.96346 2.05386
-0.5 0.0 0.15 2.11019 2.29231
-0.5 0.5 0.05 1.75225 1.88450
-0.5 0.5 0.15 2.35127 2.05172
0.0 -0.5 0.05 3.18932 3.26666
0.0 -0.5 0.15 3.13890 3.60544
0.0 0.0 0.05 3.03071 3.13986
0.0 0.0 0.15 3.17388 3.42430
0.0 0.5 0.05 2.86349 3.00769
0.0 0.5 0.15 1.38608 3.23280
0.5 -0.5 0.05 2.89283 4.16635
0.5 -0.5 0.15 4.37272 4.55925
0.5 0.0 0.05 3.95651 4.06780
0.5 0.0 0.15 4.14634 4.41811
0.5 0.5 0.05 3.18719 3.96663
0.5 0.5 0.15 3.90661 4.27199

forothe copper water andoalumina water are depictedofor different values ofoM ,

when S = d = fw = 0.1, A = B = λ = 0.5 and Ec = 0.3. It has been noted

that with the increase of M the velocity boundary layer thickness decreases and

temperature profile increases.

FIGURE 4.8, 4.9, 4.10 and 4.11 depict the dimensionless velocity and temper-

ature profile for various values of suction parameter fw when S = M = d =

0.1, A = B = λ = 0.5 and Ec = 0.3. It can be seen that with the increase

of suction parameter fw of the fluid, velocity profile and temperature profile de-

creases. The physical reason for fact that told fluid particles are injected into the

micro-porous channel while the fluid particles that are heated on the hot wall of

the micro-porous channel are removed out. This decreases the temperature by

weakening the convection which results to a decrease in velocity.

FIGURE 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18 and 4.19 present the impact of the

various value of heat generation source (A > 0 and B > 0) and heat absorption

sink (A < 0 and B < 0) on the velocity and temperature distribution when



Nanofluid flow withoJoule Heating, Porosity and Thermal Radiation 59

S = M = d = 0.1, λ = 0.5 and Ec = 0.3. An increase in heat source results

the increase in velocity and temperature profile. Figures 4.12, 4.13, 4.16 and 4.17

depicts that velocity profile increases with the increases in heat source parameter

A for all the nanofluids.

FIGURE 4.20, 4.21, 4.22 and 4.23 demonstrates the velocity and temperature

behaviors in both situations of copper and Alumina water for various values of λ

when S = M = d = fw = 0.1, A = B = 0.5 and Ec = 0.3. It is noted that when

convection parameter is increased for both nanofluids whereas temperature profile

is decreased. This is due to the fact that heat transfer through a fluid increases

the fluid motion.

FIGURE 4.24, 4.25, 4.26 and 4.27 are delineating the impact of the magnetic

field inclination angle γ, while other parameters are fixed for both Cu-water and

Al2O3 water. Figures 4.24 and 4.25 disposes the consequence of the magnetic field

inclination angle γ on the velocity profiles. It is self-evident that increasing the

angle of inclination γ decreases the velocity profile. The reason for this is that

as the angle of inclination increases, the magnetic field becomes stronger. From

these figures the fact that an opposing force is generated by the magnetic field,

generally referred as the Lorentz force, which opposes the motion of the fluid re-

sulting a decrements in the momentum boundary layer thickness and increment

in the thermal and boundary layer thickness.

FIGURE 4.28, 4.29, 4.30 and 4.31 are sketched to show the impact of perme-

ability parameter d on the velocity and temperature distributions when S = M =

fw = 0.1, A = B = λ = 0.5 and Ec = 0.3. It is obvious that presence of porous

medium causes higher restriction to fluid flow which causes the fluid decelerate.

The effect of increases value of permeability parameter contributes to thickness of

thermal boundary layer which is shown in figure 4.30.

In FIGURE 4.32, 4.33, 4.34 and 4.35 the effect of Eckert number Ec on velocity

and temperature profile when S = M = d = fw = 0.1 and A = B = λ = 0.5

are plotted. It can be seen that for larger values of the Eckert number intensifies

the momentum and thermal boundary layer thickness. Generally, the rising value

of Ec encourage the diffusion of particle due to this cause we saw improvement in

momentum and thermal boundary layers.



Nanofluid flow withoJoule Heating, Porosity and Thermal Radiation 60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Ag
Cu
Al

2
O

3

TiO
2

S=M=d=f
w

=0.1 , A=B= =0.5 , E
c
=0.3

Figure 4.2: Velocity profile for different types of nanofluids
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Figure 4.3: Temperature profile for different types of nanofluids
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Figure 4.4: Effects of M on velocity distribution for Cu-water
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Figure 4.5: Effects of M on velocity profile for Al2O3-water
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Figure 4.6: Effects of M on temperature profile for Cu-water
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Figure 4.7: Effects of M on temperature distribution for Al2O3-water
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Figure 4.8: Effects of fw on velocity profile for Cu-water
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Figure 4.9: Effects of fw on velocity distribution for Al2O3-water
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Figure 4.10: Effects of fw on temperature distribution for Cu-water
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Figure 4.11: Effects of fw on temperature distribution for Al2O3-water
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Figure 4.12: Effects of A on velocity distribution for Cu-water
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Figure 4.13: Effects of A on velocity distribution for Al2O3-water
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Figure 4.14: Effects of A on temperature distribution for Cu-water
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Figure 4.15: Effects of A on temperature distribution for Al2O3-water
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Figure 4.16: Effects of B on velocity distribution for Cu-water
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Figure 4.17: Effects of B on velocity distribution for Al2O3-water
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Figure 4.18: Effects of B on temperature distribution for Cu-water
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Figure 4.19: Effects of B on temperature distribution for Al2O3-water
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Figure 4.20: Effects of λ on velocity distribution for Cu-water
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Figure 4.21: Effects of λ on velocity distribution for Al2O3-water
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Figure 4.22: Effects of λ on temperature distribution for Cu-water
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Figure 4.23: Effects of λ on temperature distribution for Al2O3-water
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Figure 4.24: Effects of γ on velocity profile for Cu-water
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Figure 4.25: Effects of γ on velocity profile for Al2O3-water
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Figure 4.26: Effects of γ on temperature profile for Cu-water
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Figure 4.27: Effects of γ on temperature distribution for Al2O3-water
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Figure 4.28: Effects of d on velocity distribution for Cu-water
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Figure 4.29: Effects of d on velocity distribution for Al2O3-water
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Figure 4.30: Effects of d on temperature distribution for Cu-water
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Figure 4.31: Effects of d on temperature distribution for Al2O3-water
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Figure 4.32: Effects of Ec on velocity profile for Cu-water
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Figure 4.33: Effects of Ec on velocity profile for Al2O3-water
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Figure 4.34: Effects of Ec on temperature distribution for Cu-water
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Figure 4.35: Effects of Ec on temperature distribution for Al2O3-water



Chapter 5

Conclusion

In this research work, we first analyzed the two-dimensional, unsteady stretch-

ing surfaceowith non-uniform heat source/sinkoin the presence ofoinclined mag-

netic field. The set of continuity equation, momentum and energy equations are

transformedointo the dimensionless ODEs by an appropriate transformation. Nu-

merical solutions are obtained by using the shooting technique. The influence of

distinct physical parameters such as, Eckert number Ec, magnetic field parameter

M , Prandtl number Pr, unsteadiness parameter S and buoyancy or convection

parameter λ on the velocity profile and temperature profile are elaborated in the

graphical and tabular form. Some interesting findings have been listed below:

The magnetic field is strengthened by the inclined angle, which also reduces the

velocity profile of the flow and the local Nusselt number while improving the skin

friction coefficient.

At γ =
π

2
theomagnetic field acts likeoa transverse magnetic field.

The velocity and temperature of various types of nanofluids alter, implying that

nanofluids in the presence of a magnetic field and a heat source/sink are significant

in the cooling and heating processes.

For all forms of nanofluids, the heat transfer rate increases with the heat sink

A < 0and B < 0, but the opposite is true with the heat source A > 0 and B > 0.

For both pure fluid and nanofluids, increasing the suction parameter fw > 0 in-

creases the skin friction coefficient and local Nusselt number, whereas increasing
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the injection parameter fw < 0 has the reverse effect.

In both pure fluid and nanofluids, increasing the unsteadiness parameter S in-

creases the skin friction coefficient and the local Nusselt number.

The skin friction coefficient decreases as the convection parameter λ is increased,

whereas the local Nusselt number has the reverse effect in both pure fluid and

nanofluid scenarios.
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